Anand Institute Starts Regular Classes From 10th of JULY. Regestration Starts || Upcoming Batches-

**Click To View**|| NET MATHS 2nd Batch Starts From 28th JULY Hurry Up :-**Register Now**|| Correspondence Courses-**Click To View**||Descriptive statistics, exploratory data analysis Sample space, discrete probability, independent events, Bayes theorem. Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions. Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central Limit theorems (i.i.d. case). Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution, Poisson and birth-and-death processes. Standard discrete and continuous univariate distributions. sampling distributions, standard errors and asymptotic distributions, distribution of order statistics and range.Methods of estimation, properties of estimators, confidence intervals. Tests of hypotheses: most powerful and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests. Simple nonparametric tests for one and two sample problems, rank correlation and test for independence. Elementary Bayesian inference. Gauss-Markov models, estimability of parameters, best linear unbiased estimators, confidence intervals, tests for linear hypotheses. Analysis of variance and covariance. Fixed, random and mixed effects models. Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression. Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation. Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size sampling. Ratio and regression methods. Completely randomized designs, randomized block designs and Latin-square designs. Connectedness and orthogonality of block designs, BIBD. 2K factorial experiments: confounding and construction. Hazard function and failure rates, censoring and life testing, series and parallel systems.

Linear programming problem, simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1. All students are expected to answer questions from Unit I. Students in mathematics are expected to answer additional question from Unit II and III. Students with in statistics are expected to answer additional question from Unit IV.